Contribution from the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294

NMR Studies of the Reactions of Me₂AsH with Me₂AsNMe₂ and Me₂AsNMe₂·BH₃: Synthetic Routes to Me₂AsAsMe₂

Virendra K. Gupta, Larry K. Krannich,* and Charles L. Watkins

Received December 26, 1985

Me2AsH reacts irreversibly with Me2AsNMe2 and Me2AsNMe2 BH3 to give good yields of Me2AsAsMe2. The nitrogen-containing product is Me_2NH or Me_2NH ·BH₃, respectively. These reactions have been followed by using multinuclear (¹H, ¹¹B, and ¹³C) NMR spectroscopy to elucidate the respective reaction mechanisms. Although the Me2AsH/Me2AsNMe2 reaction proceeds faster

initially, the overall rate of reaction is slower than that for the Me₂AsH/Me₂AsNMe₂·BH₃ reaction. This is a consequence of the presence of inhibiting exchange reactions in the Me_2AsH/Me_2AsNMe_2 system that are absent when Me_2AsNMe_2 and Me_2NH

are bound to BH_3 in the $Me_2AsH/Me_2AsNMe_2BH_3$ reaction. A detailed NMR study of the exchange reactions involving the >AsN</>NH, >AsAs</>AsH, and >AsN</>AsAs< systems is also discussed with respect to the relative impact of those systems on the rate of formation of Me₂AsAsMe₂.

Introduction

During the past few decades numerous publications have discussed the synthetic routes to homonuclear-bonded compounds of the group 15 elements. The majority of these reports pertain to the synthesis of N-N-1-5 and P-P-bonded⁶⁻¹⁴ compounds. Synthetic pathways to As-As-bonded compounds have received less attention.¹⁵⁻¹⁸ Recently, however there has been renewed interest^{19,20} in the synthesis of novel homonuclear-bonded compounds of P, As, and Sb that contain multiple bonding between two group 15 elements.

A survey of the literature^{15-18,21-25} indicates that the general synthetic routes to di- and polyarsines involve (a) the oxidation

- (1) Wiberg, N.; Fischer, G.; Bachhuber, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1979, 34B, 1385-1390 and references therein.
- Willis, C.; Back, R. A.; Parsons, J. M.; Purdon, J. G. J. Am. Chem. Soc. 1977, 99, 4451-4456 and references therein.
- (3) Wiberg, N.; Fischer, G.; Bachhuber, H. Chem. Ber. 1974, 107, 1456-1471.
- (4) Nelsen, S. F.; Hollinsed, W. C.; Calabrese, J. C. J. Am. Chem. Soc. 1977, 99, 4461-4467 and references therein.
- (5) Dewar, M. J. S.; Jennings, B. J. Am. Chem. Soc. 1969, 91, 3655-3656 and references therein.
- Issleib, K.; Seidel, W. Chem. Ber. 1959, 92, 2681-2694. (6)
- Issleib, K.; Krech, K. Chem. Ber. 1965, 98, 1093-1096. (7)
- Cowley, A. H. Compounds Containing Phosphorus-Phosphorus Bonds; (8) Dowden Hutchinson & Ross: Stroudsburg, PA, 1973, and references therein.
- (9) Burg, A. B. Inorg. Chem. 1985, 24, 3342-3347.
- (10) Aime, S.; Harris, R. K.; McVicker, E. M.; Fild, M. J. Chem. Soc., Dalton Trans. 1976, 2144-2153 and references therein.
- (11) Elmes, P. S.; Middleton, S.; West, B. O. Aust. J. Chem. 1970, 23, 1559-1570 and references therein.
- (12) McFarlane, H. C. E.; McFarlane, W.; Nash, J. A. J. Chem. Soc., Dalton Trans. 1980, 240-244.
- (13) Baudler, M.; MaKowka, B. Angew. Chem., Int. Ed. Engl. 1984, 23, 987-988.
- (14) Lambert, J. B.; Jackson, G. F.; III; Mueller, D. C. J. Am. Chem. Soc. 1968, 90, 6401-6405.
- (15) Breckner, A.; Grobe, J. Z. Anorg. Allg. Chem. 1975, 414, 269-276.
 (16) Becker, G.; Gutekunst, G.; Witthauer, C. Z. Anorg. Allg. Chem. 1982, 486. 90-101
- (17) Mundt, O.; Becker, G.; Wessely, H. J.; Breunig, H. J.; Kischkel, H. Z. Anorg. Allg. Chem. 1982, 486, 70-89.
- (18) Baudler, M.; Haltenhoff, S. W. Angew. Chem., Int. Ed. Engl. 1984, 23, 379-380.
- Cowley, A. H.; Kilduff, J. E.; Lasch, J. G.; Mehrotra, S. K.; Norman, (19) N. C.; Pakulski, M.; Whittlesey, B. R.; Atwood, J. L.; Hunter, W. E. Inorg. Chem. 1984, 23, 2582-2593.
- (20) Courtet, C.; Escudie, J.; Madaule, Y.; Ranaivonjatovo, H.; Wolf, J. Tetrahedron Lett. 1983, 24, 2769-2770.
- (21) Busse, P. J.; Irgolic, K. J.; Dominguez, R. J. G. J. Organomet. Chem. **1974**, *81*, 45–48
- (22) Rheingold, A. L.; Bellama, J. M. J. Organomet. Chem. 1975, 102, 445–455.
- (23) Abraham, K. M.; Van Wazer, J. R. J. Organomet. Chem. 1976, 113, 265-271
- (24) Rheingold, A. L.; Choudhury, P. J. Organomet. Chem. 1977, 128, 155-160.
- (25) Sisler, H. H. "The Homoatomic Bond." In Inorganic Reactions and Methods; Zuckerman, J. J., Ed.; VCH Publishers: Deerfield Beach, FL; Vol. 7 in press; and references therein.

of substituted >As-H-bonded arsines, $^{26-28}$ (b) the reduction of haloarsines or As-O-bonded derivatives, 29-32 and (c) condensation reactions involving >AsH/>AsCl,^{26,33-35} >AsH/>AsOAs<,^{35,36} and $>AsH/>AsO^{37}$ systems. Many of these synthetic routes give low yields of the As-As-bonded compounds and/or are plagued by side products that are difficult to remove.

Very few reports have appeared in the literature concerning the mechanistic aspects of the reactions involved in the synthesis of As-As-bonded compounds. The ¹H NMR study^{38,39} of the reaction of MeAsH₂ with MeAsX₂ (X = Cl, Br, I), to produce (MeAs)₅ indicates the reaction involves a complex series of interrelated equilibria with exchange reactions among monomers, oligomers, and polymers to yield substituted diarsines, higher polymethylpolyarsines, MeAsHX, and HX. Similar studies on the reactions of Me₂AsH with Me₂AsX (X = Cl, Br, I, CN) to yield Me₂AsAsMe₂ indicate that the reactions are reversible.⁴⁰ Exchange reactions, which occur through an associative intermediate, are suggested on the basis of the experimentally determined activation parameters.

During our recent study⁴¹ on the reactivity of BH₃ THF with Me_2AsNMe_2 , we observed above -10 °C the formation of $Me_2AsAsMe_2$ as a product of adduct decomposition. We postulated that the initial step in the adduct decomposition is the formation of Me₂AsH, which reacts with undecomposed adduct,

Me₂AsNMe₂·BH₃, to produce Me₂AsAsMe₂.

$$Me_2AsNMe_2 \bullet BH_3 \rightarrow Me_2AsH + Me_2NBH_2$$

 $Me_2AsNMe_2\bullet\dot{B}H_3 + Me_2AsH$

 $Me_2AsAsMe_2 + Me_2NH \cdot BH_3$

Substantiation of this postulated pathway by carrying out the

independent reaction of Me₂AsH with Me₂AsNMe₂·BH₃ suggested that this might prove to be a useful synthetic route to diand polyarsines.

- (26) Blicke, F. F.; Powers, L. D. J. Am. Chem. Soc. 1933, 55, 1161-1167.
- (27) Krannich, L. K.; Sisler, H. H. Inorg. Chem. 1969, 8, 1032-1037. Anschutz, L; Wirth, H. Naturwissenshaften 1956, 43, 59 (28)
- (29) Blicke, F. F.; Smith, F. D. J. Am. Chem. Soc. 1929, 51, 2272–2276.
 (30) Blicke, F. F.; Weinkauff, O. J.; Hargreaves, G. W. J. Am. Chem. Soc.
- 1930, 52, 780-786.
- Bunsen, R. W. Ann. Chem. Pharm. 1842, 42, 14. (31)
- (32) Blicke, F. F.; Smith, F. D. J. Am. Chem. Soc. 1930, 52, 2946-2951.
- (33) Blicke, F. F.; Powers, L. D. J. Am. Chem. Soc. 1933, 55, 315-318. (34)
- Williams, E. Am. Chem. J. 1908, 40, 103-127.
- (35) Blicke, F. F.; Powers, L. D. J. Am. Chem. Soc. 1932, 54, 3353-3360.
- Blicke, F. F.; Webster, G. L. J. Am. Chem. Soc. 1937, 59, 537-539. (37) Rochow, E. G.; Hurd, D. T.; Lewis, R. N. The Chemistry of Organo-
- metallic Compounds; Wiley: New York, 1957; p 210. (38) Rheingold, A. L.; Bellama, J. M. J. Chem. Soc. D 1969, 1058-1059.
- (39) Rheingold, A. L.; Lewis, J. E.; Bellama, J. M. Inorg. Chem. 1973, 12, 2845-2850.
- (40) Rheingold, A. L.; Pleau, E. J.; Ferrar, W. T. Inorg. Chim. Acta 1977, 22. 215-218
- (41) Kanjolia, R. K.; Krannich, L. K.; Watkins, C. L. J. Chem. Soc., Dalton Trans., in press.

In this paper, we report new and convenient synthetic pathways to $Me_2AsAsMe_2$. The reactions of Me_2AsH with Me_2AsNMe_2

and Me₂AsNMe₂·BH₃ are followed by multinuclear (¹H, ¹¹B, and ¹³C) NMR spectroscopy. A detailed NMR study of the exchange reactions involving >AsN </>NH, >AsAs </>AsH, and >AsN </>AsAs < systems is also discussed with respect to the extent to which these reactions influence the rate of formation of Me₂AsAsMe₂.

Results and Discussion

The reactions of Me₂AsH with Me₂AsNMe₂ and Me₂As-

 $\dot{N}Me_2$ · $\dot{B}H_3$ in 1:1 mole ratios in toluene solution produce $Me_2AsAsMe_2$ in good yields (76% and 72%, respectively). A 40% yield of $Me_2AsAsMe_2$ has been reported previously³¹ by the reaction of Me_2AsCl with Zn dust. We have found that the Me_2AsH/Me_2AsNMe_2 condensation reaction is a straightforward and convenient synthetic route for the large-scale preparation of $Me_2AsAsMe_2$ and should be applicable to the synthesis of other symmetrical diarsines. This synthetic pathway to diarsines is irreversible and does not produce undesirable side products that are difficult to remove from the product mixture.

Reaction of Me₂AsH with Me₂AsNMe₂. The reaction of an equimolar mixture of Me₂AsH with Me₂AsNMe₂ in toluene- d_8 solution was studied as a function of temperature, time, and concentration in a sealed NMR tube and monitored by ¹H and ¹³C NMR spectroscopy. The ¹H and ¹³C NMR spectra at -80 °C consist of peaks of low intensity assigned to Me₂AsAsMe₂ and Me₂NH in addition to other peaks of high intensity corresponding to starting materials. (See Experimental Section for ¹H, ¹¹B, and ¹³C NMR assignments.)

As the temperature of the reaction mixture is raised to -45 °C, the intensity of the ¹H and ¹³C NMR peaks associated with Me₂AsAsMe₂ and Me₂NH increases, the intensity of the NMR peaks assigned to Me₂AsNMe₂ and Me₂AsH decreases, and the line width of the ¹H NMR peaks due to the Me₂N moieties of Me₂AsNMe₂ and Me₂NH broadens. The latter suggests a slow exchange process on the NMR time scale that involves the Me₂AsNMe₂ and Me₂NH.

With a temperature increase to -25 °C, an increased conversion to Me₂AsAsMe₂ and Me₂NH occurs with coalescence of the ¹H NMR peaks associated with the Me₂N moieties. This suggests a faster exchange of the Me₂N groups with increased temperature. Narrowing of the line width of the ¹H NMR peak assigned to the Me₂N group occurs with time as the reaction consumes Me₂AsAsMe₂ and produces more Me₂NH. After approximately 2 h, a 42% conversion to Me₂AsAsMe₂ and Me₂NH has occurred and the apparent rate of reaction becomes very slow. After 6 days at -25 °C (CCl₄ slush), the ¹H and ¹³C NMR spectra indicate complete conversion. We restricted our study to a maximum temperature of -10 °C due to the low boiling point of Me₂NH.

A plot of % tetramethyldiarsine produced vs. time (Figure 1A) indicates that the rate of reaction (0.50, 1.0, and 2.0 mmol of each reactant) is temperature-dependent and, for the initial 5.0 min in the 1.0 and 2.0 mmol cases, is essentially concentration-independent. Thereafter, the rate of formation of tetramethyldiarsine is slower and is both concentration- and temperature-dependent. These data suggest that after the initial fast formation of Me₂AsAsMe₂ and Me₂NH the competing reaction(s) influence(s) the rate of reaction of Me₂AsNMe₂.

We investigated several potentially competing reactions (discussed below) to determine their relative importance in the overall Me_2AsH/Me_2AsNMe_2 reaction. A quantitative kinetic study could not be carried out, because of the presence of the competing equilibria in the reaction mixture.

Reaction of Me₂AsH with Me₂AsNMe₂·BH₃. The reaction of Me₂AsH with Me₂AsNMe₂·BH₃ (1.0 mmol of each reactant) in toluene- d_8 solution was studied as a function of temperature and time in a sealed NMR tube and monitored by ¹H, ¹¹B, and ¹³C NMR spectroscopy. Higher concentrations of the reactants could not be used, because of the low solubility of Me₂AsNMe₂·BH₃

Figure 1. Percentage of Me₂AsAsMe₂ formed as a function of time: (A) Me₂AsH/Me₂AsNMe₂ reaction; (B) Me₂AsH/Me₂AsNMe₂·BH₃ reaction. Reaction conditions: (O) 2.0, (Δ) 1.0, and (\Box) 0.50 mmol of reactants for reaction (—) at -10 °C and (--) at -25 °C.

over the temperature range studied. The ¹H, ¹¹B, and ¹³C NMR spectra at -80 °C consist of high-intensity peaks for starting materials and very minor peaks assigned to Me₂AsAsMe₂ and Me₂NH·BH₃. Very little change in the relative NMR peak intensities was observed when the temperature of the reaction mixture was raised from -80 to -25 °C.

At -25 °C, the rate of reaction was faster and the reaction proceeded smoothly. Within 2 h, a 50% conversion to $Me_2AsAsMe_2$ occurred, and after 2 days, a 65% conversion was noted. After several more days at -25 °C, the ¹H, ¹¹B, and ¹³C NMR spectra of the reaction mixture indicated that the reaction had gone to completion. In comparison with the Me_2AsH/ Me_2AsNMe_2 reaction, the absence of line broadening in the ¹H NMR spectrum of the peaks associated with the Me_2N moieties suggests that exchange involving the Me_2N moieties does not occur

in the $Me_2AsH/Me_2AsNMe_2BH_3$ reaction. This is probably a consequence of the preferential binding of Me_2NH to BH_3 .

The plot of % Me₂AsAsMe₂ produced vs. time (Figure 1B) indicates that the rate of reaction is temperature-dependent. Although the initial rate of formation of Me₂AsAsMe₂ is slower, the overall rate of reaction is faster than that observed for the Me₂AsH/Me₂AsNMe₂ reaction. The slower initial rate is attributed to the lower basicity of the nitrogen in Me₂AsNMe₂·BH₃ as compared to that in Me₂AsNMe₂. The faster overall rate of reaction is a consequence of the absence of some inhibiting exchange reactions, since Me₂NH and Me₂AsNMe₂ are bound to BH₃ in Me₂NH·BH₃ and Me₂AsNMe₂·BH₃, respectively. The study was restricted to a maximum temperature of -10 °C due to the decomposition of Me₂AsNMe₂·BH₃ above -10 °C.⁴¹

Factors Influencing the Rate of the Me₂AsH/Me₂AsNMe₂ Reaction. Several mixtures of potential reactants in toluene- d_8 solution were monitored to determine the extent to which various inhibiting exchange reactions involving the reactant and the product molecules might influence the overall rate of the Me₂AsH/Me₂AsNMe₂ reaction. The ¹H and ¹³C NMR spectra of an equimolar mixture of Me₂AsAsMe₂ and Me₂NH show only peaks assignable to Me₂AsAsMe₂ and Me₂NH throughout the entire temperature range of -80 to -10 °C. Thus unlike the

$$Me_2AsCl + Me_2AsH \Rightarrow Me_2AsAsMe_2 + HCl$$

reaction where the reversibility of the reaction plays an important role in the synthesis of $Me_2AsAsMe_2$ ⁴⁰ the

$$Me_2AsH + Me_2AsNMe_2 \rightarrow Me_2AsAsMe_2 + Me_2NH$$

reaction is irreversible over the temperature and concentration conditions of our study.

The broadening of the peaks assigned to Me₂AsNMe₂ and Me_2NH in the ¹H NMR spectrum suggests that exchange of Me₂N groups between Me₂AsNMe₂ and Me₂NH, i.e. selftransamination, occurs in the Me_2AsH/Me_2AsNMe_2 reaction. This is not unexpected, since transamination reactions are a known synthetic pathway to dialkylamino-substituted arsines.^{42,43} Alder and Kober⁴⁴ have established the dimethylamino group exchange in the Me₂NH/Me₂AsNMe₂ system through NMR studies involving isotopic labeling. An equimolar mixture of Me₂AsNMe₂ and Me₂NH in toluene- d_8 solution was monitored as a function of temperature (-80 to -10 °C), and concentration by using ¹H and ¹³C NMR spectroscopy to establish the importance of transamination in influencing the rate of formation of Me₂AsAsMe₂ and Me₂NH in the Me₂AsH/Me₂AsNMe₂ reaction. The results of this study indicate minimal Me₂N exchange below -60 °C, increasing exchange with increasing temperature, fast exchange at -10 °C, and reversibility of the transamination reaction under our reaction conditions. A concentration study establishes that the exchange rate is concentration-dependent. Thus self transamination is an important contributing factor in slowing down the rate of formation of Me₂AsAsMe₂ in the Me₂AsH/ Me₂AsNMe₂ reaction when the reaction mixture contains appreciable concentrations of Me₂AsNMe₂ and Me₂NH.

The possibility of exchange between Me₂AsH and Me₂AsAsMe₂ was investigated as a function of temperature (-80 to -10 °C) by monitoring the ¹H NMR spectra of an equimolar ratio of $Me_2AsAsMe_2$ and Me_2AsH in toluene- d_8 solution. The ¹H NMR spectra undergo no change over the entire temperature range. These data suggest either no exchange or very slow exchange on the NMR time scale for this system. Because of the indistinguishability of the reactants and the products, the information concerning slow exchange could not be obtained from the Me₂AsH/Me₂AsAsMe₂ system. Thus we investigated the Me₂AsH/Et₂AsAsEt₂ system to determine if slow exchange occurs on the NMR time scale. At -80 °C, the ¹H and ¹³C NMR spectra consist of high-intensity peaks assignable to Me₂AsH and $Et_2AsAsEt_2$ and very low intensity peaks assignable to Me₂AsAsEt₂ and Et₂AsH. At -40 °C, the peaks are now of comparable intensity and a new peak assignable to Me₂AsAsMe₂ is observed. Within $2^1/_2$ h at -10 °C, an equilibrium is established between the Et₂AsAsEt₂/Me₂AsH and Me₂AsAsEt₂/ Me₂AsAsMe₂/Et₂AsH systems as indicated by no further significant change in the intensities of the peaks over the next 20 days. The ¹H NMR spectral data indicate the presence of 41% Et₂AsAsEt₂, 9% Me₂AsH, 18% Me₂AsAsEt₂, 26% Et₂AsH, and 5% $Me_2AsAsMe_2$ in the reaction mixture. Thus the exchange reaction involving Me₂AsH and Et₂AsAsEt₂ attains equilibrium rapidly, but the exchange process is slow on the NMR time scale.

The formation of Me₂AsAsMe₂ from the reaction of Et₂AsAsEt₂ with Me₂AsH suggests that Me₂AsAsEt₂ can undergo self-exchange with symmetrization and/or participate in an exchange process with Me₂AsH. To determine if diarsines undergo self-exchange of R_2As moieites, an equimolar mixture of $Et_2AsAsEt_2$ and $Me_2AsAsMe_2$ in toluene- d_8 solution was monitored by using ¹H and ¹³C NMR spectroscopy. The spectral data indicate an exchange of the R₂As groups to give an equilibrium

mixture of Me2AsAsMe2, Et2AsAsEt2, and Me2AsAsEt2 with 25%, 25%, and 50% yields at room temperature (as obtained from ${}^{1}\text{H}$ NMR peak intensity data), respectively.

The possibility of exchange involving Me₂AsAsMe₂ and Me₂AsNMe₂ was studied by monitoring the ¹H NMR spectra of a 1:1 mole ratio of these species in a toluene- d_8 solution as a function of temperature (-80 to -10 °C) and time. Only sharp peaks assignable to Me₂AsAsMe₂ and Me₂AsNMe₂ were observed over the entire temperature range. These results indicate that any exchange must be very slow on the NMR time scale for this system. Since the products and the reactants are indistinguishable, we investigated the Et₂AsAsEt₂/Me₂AsNMe₂ system as a function of temperature (-80 to -10 °C) and time by using equimolar ratios of the reactants in a toluene- d_8 solution. From -80 to -30 °C the ¹³C NMR spectrum contains only peaks associated with Me₂AsNMe₂ and Et₂AsAsEt₂. Thus exchange of Et₂As and Me₂As groups does not occur over this temperature range. At -25 °C, very low intensity peaks corresponding to Me₂AsAsEt₂ and Et₂AsNMe₂ appear. At -10 °C, the intensities of these peaks increase with time as those of the starting material peaks decrease. After 5 h at this temperature, a peak assignable to Me₂AsAsMe₂ appears and increases in intensity with time. Thus the unsymmetrical diarsine undergoes symmetrization. After 5 days at -10 °C, the reaction reaches equilibrium. The ¹H NMR spectral data at equilibrium indicate the presence of 18% Me₂AsNMe₂, 34% Et₂AsAsEt₂, 24% Et₂AsNMe₂, 20% Me₂AsAsEt₂, and 4% Me₂AsAsMe₂ in the reaction mixture. This study suggests the following equilibria are established in solution:

 $Et_2AsAsEt_2 + Me_2AsNMe_2 = Et_2AsNMe_2 + Me_2AsAsEt_2$

$$2Me_2AsAsEt_2 \rightleftharpoons Et_2AsAsEt_2 + Me_2AsAsMe_2$$

Since the line widths of all the peaks in the ¹H and ¹³C NMR spectra over the entire temperature range remain very narrow, we conclude that the exchange of Me_2As and Et_2As moieties is very slow on the NMR time scale.

Our study indicates that the following exchange reactions can play a role in influencing the overall rate of the Me₂AsH/ Me₂AsNMe₂ reaction:

 $Me_2AsNMe_2 + Me_2NH \implies Me_2AsNMe_2 + Me_2NH$ (1)

 $Me_2AsAsMe_2 + Me_2AsH \rightleftharpoons Me_2AsAsMe_2 + Me_2AsH$ (2)

 $Me_2AsAsMe_2 + Me_2AsAsMe_2 \Longrightarrow$

 $Me_2AsAsMe_2 + Me_2AsAsMe_2$ (3)

 $Me_2AsAsMe_2 + Me_2AsNMe_2 \Longrightarrow$

 $Me_2AsAsMe_2 + Me_2AsNMe_2$ (4)

Although the exchange processes represented by eq 2-4 undoubtedly occur in the reaction solution, these processes appear to be slow on the NMR time scale and thus of minor importance in influencing the overall rate of reaction. The NMR data suggest that the exchange process involving the Me₂N group in Me_2AsNMe_2 and Me_2NH represented by eq 1 plays the most significant role in influencing the rate of formation of Me₂AsAsMe₂. Although this self-transamination process is of minor importance in influencing the rate of formation of Me₂AsAsMe₂ at low concentrations of Me₂NH (initial stages of the Me₂AsH/Me₂AsNMe₂ reaction), it is of prime importance at higher concentrations of Me₂AsNMe₂ and Me₂NH (>20% conversion to $Me_2AsAsMe_2$). This is further demonstrated by the fact that the rate of formation of Me₂AsAsMe₂ in the reaction containing 0.50 mmol of each reactant is quite fast within the first 30 min (as compared to the first 5 min in the 1.0 and 2.0 mmol reactions) even though the overall rate of reaction is found to be very slow in all three concentration studies.

Factors Influencing the Rate of the Me₂AsH/Me₂AsNMe₂·BH₃

Reaction. The Me₂AsH/Me₂AsNMe₂·BH₃ reaction is irreversible over the temperature range of our study. Since the Me₂NH is bound to the BH₃ upon formation of Me₂AsAsMe₂, the exchange process represented by eq 1 cannot occur. The ¹H, ¹¹B, and ¹³C NMR spectra at -10 °C of an equimolar mixture of Et₂AsAsEt₂

⁽⁴²⁾ Kober, F. Z. Anorg. Allg. Chem. 1973, 400, 285-293.
(43) Krannich, L. K. Inorg. Chem. 1980, 19, 3300-3306.
(44) Alder, O.; Kober, F. Chem.-Ztg. 1976, 100, 235-236.

and Me₂AsNMe₂·BH₃ in toluene- d_8 solution show only peaks assignable to Et₂AsAsEt₂ and Me₂AsNMe₂·BH₃ even when the reaction is maintained at -10 °C overnight. Thus the exchange process represented by eq 4 cannot occur. On the other hand, those exchange reactions indicated by eq 2 and 3 can occur in solution and can influence the rate of formation of Me₂AsAsMe₂, but are of minor importance.

All the exchange processes that have been studied probably involve the formation of a four-centered intermediate, ^{14,42,45} which undergoes bond making and breaking to give the observed equilibrium mixture of the exchange products. Undoubtedly, the relative basicity of the group 15 atom, As and/or N, in these arsines influences the ease of formation of the four-centered intermediate and the resultant bond formation and disruption.

Presently we are investigating in detail the steric and electronic effects of various substitutents on the ease of the exchange of R₂As moieties in R₂AsAsR₂/R'₂AsAsR'₂, R₂AsAsR₂/R'₂AsH, and $R'_{2}AsAsR'_{2}/R_{2}AsNMe_{2}$ systems.

Experimental Section

Standard high-vacuum-line techniques and a Vacuum Atmospheres Model HE-43 Dri-lab equipped with a Model HE-493 Dri-Train were used for storing and handling of all compounds. Me_2NH (Matheson Gas products) was dried over sodium metal and was distilled on the vacuum line prior to use. THF- d_8 , toluene- d_8 and Me₄Si were purchased from Aldrich Chemical Co. and were stored over molecular sieves. Di-borane(6),⁴⁶ Me₂AsNMe₂ (108 °C),⁴⁷ Me₂AsAsMe₂ (60 °C/25 torr),³¹ Me₂AsH (36 °C),⁴⁸ Me₂AsCl (106 °C),⁴⁹ Et₂AsCl (73-76 °C/73 torr),⁵⁰

and Me₂AsNMe₂·BH₃⁴¹ were synthesized by previously reported methods. $Et_2AsAsEt_2$ (185 °C) was synthesized by the reaction of Et_2AsCl with Zn dust.³¹ The purity of the compounds was checked by NMR spectroscopy prior to use. ¹H, ¹¹B and ¹³C NMR spectra were recorded on a Nicolet 300-MHz multinuclear FT NMR spectrometer operating at 300.1, 96.3, and 75.4 MHz, respectively. Chemical shift values for the ¹¹B resonance were measured relative to that of BF₃·OEt₂, the high-field shift being negative. ¹H and ¹³C NMR chemical shifts were measured with respect to tetramethylsilane as an internal reference. All NMR spectra were obtained in toluene- d_8 as solvent. The integration of the peaks in the ¹H NMR spectra of a sample was done with respect to the constant integration value of Me4Si throughout a given study. See spectral data below for all NMR assignments.

Synthesis of Me₂AsAsMe₂ from the Reaction of Me₂AsNMe₂ with Me₂AsH. A 20.0-mmol sample of dimethylarsine was condensed onto 20 mL of a toluene solution containing 20.0 mmol (3.0 g) of (dimethylamino)dimethylarsine at -196 °C by using standard vacuum-line techniques. The reaction was slowly warmed to 10 °C and stirred for 2 h. The toluene and dimethylamine were fractionally distilled under reduced pressure in the vacuum line. The product (3.9 g or 93% yield) thus obtained was purified on a spinning band-distillation column. The fraction boiling at 60 °C/25 torr was collected (yield 3.2 g or 76% yield).

Synthesis of Me2AsAsMe2 from the Reaction of Me2AsNMe2·BH3 with Me₂AsH. A 5.0-mmol sample of B_2H_6 was condensed onto a mixture of toluene (15 mL) and THF (2 mL) maintained at -196 °C by using standard vacuum-line techniques. The reaction mixture was warmed to room temperature. The vessel was recooled to -196 °C, and 1.5 g (10.0 mmol) of Me₂AsNMe₂, previously dissolved in 2 mL of toluene, was condensed into it. The solution was stirred at 0 °C for 1 h. A 10.0-mmol sample of Me₂AsH was condensed onto the frozen mixture at -196 °C. The mixture was warmed to 0 °C and stirred for 4 hrs. Trap-to-trap distillation gave crude Me₂AsAsMe₂ in the -10 °C (ethylene glycol slush) trap. Fractional distillation on a spinning band column gave 1.5 g (72% yield) of $Me_2AsAsMe_2$ boiling at 60 °C/25 torr.

(45) Alder, O.; Kober, F. J. Prakt. Chem. 1977, 319, 313-316.

- 429-432.

Reactions of Me2AsNMe2 with Me2AsH, Me2NH, Me2AsAsMe2, and Et₂AsAsEt₂. The reactions of Me₂AsNMe₂ with equimolar amounts of Me₂AsH (0.5, 1.0, and 2.0 mmol), Me₂NH (0.5 and 1.0 mmol), Me₂AsAsMe₂ (1.0 mmol), and Et₂AsAsEt₂ (1.0 mmol) in toluene-d₈ were carried out by using the following general procedure. The stochiometric amount of the less volatile arsine dissolved in toluene- d_8 and a drop of Me₄Si (total volume 3.0 mL) were added into the NMR tube (10 mm \times 22.5 cm, Pyrex) equipped with a greaseless vacuum stopcock. The tube was degassed by using standard vacuum-line techniques. At -196 °C, an equimolar amount of the more volatile arsine was condensed into the NMR tube. The tube was sealed, agitated gently at -95°C (toluene slush), and inserted into the precooled (-90 °C) probe of NMR spectrometer. The reaction was then followed at the selected temperature or over the temperature range of -80 to -10 °C by recording ¹H and/or ¹³C NMR spectra as a function of time.

Reactions of Me₂AsAsMe₂ with Me₂NH, Me₂AsH, and Et₂AsAsEt₂ and of Et₂AsAsEt₂ with Me₂AsH and Me₂AsNMe₂·BH₃. The reactions of Me₂AsAsMe₂ with equimolar amounts of Me₂NH (1.0 mmol), Me₂AsH (1.0 mmol), and Et₂AsAsEt₂ (0.50 mmol) and of Et₂AsAsEt₂ with equimolar amounts of Me₂AsH (1.0 mmol) and Me₂AsNMe₂·BH₃

(1.0 mmol) were carried out in toluene- d_8 by using the above-described procedure.

Reaction of Me₂AsNMe₂·BH₃ with Me₂AsH. The reaction of 1.0 mmol of Me₂AsNMe₂·BH₃ with 1.0 mmol of Me₂AsH in toluene-d₈ (total volume 3.0 mL) was carried out by using the following procedure.

The desired stoichiometric amount of Me2AsNMe2·BH3 was synthesized in the NMR tube according to the procedure previously described in the literature.⁴¹ An equimolar quantity of Me₂AsH was condensed onto the

frozen toluene-d₈ solution (-196 °C) of Me₂AsNMe₂·BH₃. The tube was sealed, agitated gently at -95 °C, and inserted into the precooled (-90 °C) probe of the NMR spectrometer. The reaction was then followed at selected temperatures in the -80 to -10 °C range by monitoring the ¹H, ¹³C, and ¹¹B resonances as a function of time.

¹H NMR Spectral Data. The following -10 °C ¹H NMR spectral data (δ values in ppm) were determined independently on prepurified or synthesized compounds. Me₂NH: $\delta_{\rm H} = 2.17$. Me₂NH·BH₃: $\delta_{\rm H} = 1.96$ (Me₂N, doublet), 3.99 (NH, ${}^{3}J_{\rm HCNH} = 5.73$ Hz). Me₂AsH: $\delta_{\rm H} = 0.77$ (Me₂As, doublet, ${}^{3}J_{\rm HH} = 7.0$ Hz), 2.39 (AsH, septet, ${}^{3}J_{\rm HH} = 6.9$ Hz). $Me_2AsNMe_2: \delta_H = 0.79 (Me_2As), 2.42 (Me_2N). Me_2AsNMe_2·BH_3: \delta_H$ = 0.82 (Me₂As), 2.09 (Me₂N). Et₂AsH: $\delta_{\rm H}$ = 1.08 (triplet, ${}^{3}J_{\rm HH}$ = 7.56 Hz, CH₃CH₂As), 1.19-1.55 (complex multiplet, CH₃CH₂As), 2.51 (AsH, ${}^{3}J_{HH} = 7.56$ Hz), Et₂AsNMe₂: $\delta_{H} = 1.08$ (CH₃CH₂As, multiplet), 1.45 (CH₃CH₂As, multiplet), 2.56 (Me₂N). Me₂AsAsMe₂: $\delta_{\rm H} =$ 0.96. Me₂AsAsEt₂: $\delta_{\rm H} = 1.01$ (Me₂As), 1.13 (CH₃CH₂As, ${}^{3}J_{\rm HH} = 7.70$ Hz), 1.48 (CH₃CH₂As). Et₂AsAsEt₂: $\delta_{\rm H} = 1.16$ (CH₃CH₂As, ${}^{3}J_{\rm HH} =$ 7.70 Hz), 1.54 (CH₃CH₂As).

¹¹B NMR Spectral Data. The following -10 °C ¹¹B NMR data (δ values in ppm) were determined independently in this laboratory on the following prepurified or synthesized compounds. Me₂NH·BH₃: $\delta_B =$ -14.05 (${}^{1}J_{BH} = 97.7 \text{ Hz}$). Me₂AsNMe₂·BH₃: $\delta_{B} = -11.36$ (${}^{1}J_{BH} = 98.7$

Hz). ¹³C NMR Spectral Data. The following -10 °C ¹³C NMR data (δ values in ppm) were determined independently in this laboratory on the following prepurified or synthesized compounds. Me₂NH: $\delta_{C} = 38.87$ ${}^{(J)}_{CH} = 131.9 \text{ Hz}, {}^{3J}_{CH} = 6.0 \text{ Hz}$. Me₂NH·BH₃: ${}^{5}_{\mathcal{O}_{C}} = 43.82 ({}^{J}_{CH} = 138.7 \text{ Hz}, {}^{23}_{J}_{CH} = 4.6 \text{ Hz}$). Me₂AsH: ${}^{5}_{\mathcal{O}_{C}} = 1.43 ({}^{1}_{J}_{CH} = 132.5 \text{ Hz}, {}^{23}_{J}_{CH} = 3.0 \text{ Hz}$). Et₂AsH: ${}^{5}_{\mathcal{O}_{C}} = 10.96 (CH_{3}CH_{2}As), 13.82 (CH_{3}CH_{2}As)$ H_2 As). Me₂AsNMe₂: $\delta_C = 9.70$ (Me₂As, ${}^1J_{CH} = 130.6$ Hz, ${}^3J_{CH} = 4.0$ Hz), 41.92 (Me₂N, ${}^{1}J_{CH} = 132.7$ Hz, ${}^{3}J_{CH} = 5.3$ Hz). Me₂AsNMe₂·

BH₃: $\delta_{\rm C} = 12.63$ (Me₂As, ¹J_{CH} = 132.7 Hz), 47.76 (Me₂N, ¹J_{CH} = 138.4 Br3, $b_C = 12.05$ (Mc2As, $J_{CH} = 132.7$ Hz), 47.10 (Mc2As, $J_{CH} = 136.4$ Hz). Et₂AsNMe₂: $\delta_C = 10.48$ (CH₃CH₂As, $^{1}J_{CH} = 126.5$ Hz), 19.45 (CH₃CH₂As, $^{1}J_{CH} = 130.8$ Hz), 42.56 (Me₂N, $^{1}J_{CH} = 132.5$ Hz, $^{3}J_{CH} = 5.2$ Hz). Me₂AsAsMe₂: $\delta_C = 5.94$ ($^{1}J_{CH} = 132.6$ Hz). Me₂AsAsEt₂: $\delta_C = 6.15$ (Me₂As, $^{1}J_{CH} = 132.7$ Hz, $^{3}J_{CH} = 4.2$ Hze, 12.63 (CH₃CH₂As, $^{1}J_{CH} = 132.3$ Hz). $^{1}J_{CH} = 125.6$ Hz, $^{3}J_{CH} = 3.5$ Hz), 15.15 (CH₃CH₂As, $^{1}J_{CH} = 132.3$ Hz). Et₂AsAsEt₂: $\delta_C = 12.80$ (CH₃CH₂As, $^{1}J_{CH} = 125.8$ Hz, $^{2}J_{CH} = 3.6$ Hz), $^{4}A_{63}$ (CH CH As $^{1}J_{CH} = 132.7$ Hz, $^{2}J_{CH} = 24.1$ Hz, $^{2}J_{CH} = 3.6$ Hz), 14.63 (CH₃C H_2 As, ${}^1J_{CH} = 132.4$ Hz, ${}^2J_{CH} = 4.1$ Hz).

Registry No. Me₂AsAsMe₂, 471-35-2; B₂H₆, 19287-45-7; Me₂AsH, 593-57-7; Me₂AsNMe₂, 30880-19-4.

⁽⁴⁶⁾ Freeguard, G. F.; Long, L. H. Chem. Ind. (London) 1965, 471.